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Certain results are established in the theory of stability on the
basis of first approximations for systems with lag [ delayed systems].
Sufficient conditions are obtained for first approximation stability
of such systems,

1. Let us consider the following system of equations of perturbed
motion:

‘i’f‘-_F,(t Zi(t)y o eer Ba(l), BE—1), oo, Tt —7)  G=liewyn) (1.1)

where F (t; xl(t), ceny x,(2), xi(t -1), s, 2,(t =) ) are holo-
morphic functions of the varlables z, (1), ..., xn(t) xi(t -1}, ...,
x,(t — 1), satisfying the conditions F (¢t; 0, ..., 0, ..., 0) =

i=1, ..., n).

Expanding the right-hand terms of the equations {1.1) in powers of
the variables xl(t), ceey x,(8), xl(t S N xn(t — r), we obtain

=S P20 g OB —D + X G=Lom (12)

j=1

where p‘J(t) and ¢;.(t) stand for oF,/d x.(t) and 9F,/d x (t -r),
respectively, when xj(t) 0, x; (t~7) = 0; the X, G=1 ..., n) are
functions whose power expans1ons begin with terms of degree not lower
than the second.

Along with the system of equations of the first approximation

fdf} =M POz @)+ Ozt —7)  (=1....m) (1.3)

j=1

we shall consider the system
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dz; ks . ;
= > (pi; () + @i (£)) ; i=15...,n) (1.4)

j=1

which is obtained from (1.3) by setting 7 = 0.

let us suppose that the null solution (i.e. the identically vanishing
or trivial solution) of the system (1.4) is asymptotically stable, and
that for it there is given a positive-definite quadratic form, with
bounded coefficients,

n
V= 2 oc,-j(t)xixj

i, jel

which satisfies the hypotheses of Liapunov's theorem [1] on asymptotic
stability. Under these conditions and by equation (1.4), the derivative
of V is given by

%}t—- = é ag5(°) () zix; (1.9)
i, j=1
where
n d
2@ (1) = 3 [a1e (1) (Poy (1) + 965 (1) F 30 (1) (P (1) + it (O] + -
§=1
G i=1,...,n)

Furthermore, the expression in (1.5) is a negative-definite quadratic
form.

We shall next explain under what conditions the quadratic form V will
be a function satisfying Liapunov's theorem on asymptotic stability for
a system of differential equations of first approximations of the type
(1.3). The derivative of the quadratic form V is, because of (1.3).

%‘= 2"; by z (2 () + ) (@) z;(E—7) (1.6)
i jel i, j=1
where

daij
dt

bus (1) = S} (10 8) Pag () + a5 (8) pos () +

§=1
n
cij (£) =2 )] ais (2) sj (2)
L
For the purpose of simplifying later computations, we make a change
of variables and reduce the quadratic form V to the sum of squares,
2 2
V= y, 4+ coo + 7,5
It is well known that this can always be accomplished for definite
forms by a non-singular linear transformation of the type
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Ti=kn®ph+ ... Fkin (D) Un
Making the indicated change of variables in (1.6), we obtain
d ( by
ar \Z, 1}“— 2 Aij (O y: (1) y; (1) + 2 Bi; () yi (D y; (t—=) (1.7)

==l i j=1 i; j=1

where
n k3
Ai; ()= 3 bavk (Dhyi (1),  Bij ()= ) covkgi () byj (£ —7)
8 v=1 B;r=1

On the basis of Theorem 5 proved in [2 ], the null solution of the
system {1.3) will be asymptotically stable if there exists a positive-
definite function V(t; x , ..., xn), which has an arbitrarily small upper
bound, and which is such that its derivative is negative-definite for all
values x,(t -~ r), ..., x,(t - r) satisfying the condition

V(g—= 2t —1)e ., Zo(E—0)) <<V (G2 (), ., 2a(t)  (1.8)

This condition (1.8) takes the following form in terms of the new
variables Yyr veer Yot

O —) 4+ . =< O+ . F () 1.9)
Next, let us determine the maximum of the function dV/dt for fixed
values y, (¢t), ..., y,(¢) and for values y, (¢t - 7), yn(t -7)

satisfying t‘\e condltl.on (1.9). Let us set y (¢t - r) z; i=1, ..., n)
Using Lagrange’s method [3 ], we construct the function

<I)-~-——~—)\[V(z1, coir Z) =V (Y1, ooy Yn))
or by (1.7)
D= > A;(Oyyi+ D) Bi(Dyzi+ ) [2. 2 — Zyﬂ (1.10)
i; j=1 i; je=1 iml i=1{

The values Zyy eees Z, for. which the function dV/dt takes on a maximum
are found from the system of equations

n
2. }_‘,Bu(t)yl—zn,_o S -y =0 (111

im] i=]

By determining the z; from the first set of equations, and substitut-
ing their values in the second set, we find

r=2[3 5“ Bi; (1) i) / 3 v (1.12)

Multiplying each of the first n equations (1.11) by z; and adding the
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result, we obtain

n

2 Bij (t)in]“-—'Z)\Z Zj2=0 (113)

i, j=1 i=1

But from the second equation of (1.11) it follows that 212 + e

= ylz + e+ ¥, 2, and hence,

3 Byt ={(3 v [3 (2 By ui) )" (1.14)

i, Je=1 j=1 j=1 i=1

The quadratic form appearing in the square brackets of equation (1.14)
can be transformed to its canonical form by means of an orthogonal trans-
formation. If this is done we obtain

n n \ n -
S Bi®y) =3 w3 (1.13)
j=1 i=1 i1

where f L f are llnear functions of the variables y,, ..., Yn
such that y vee 5'2 e+ & Z, Making the indicated sub-

stitutions in (1 14) we obtaln

Zﬁ‘: Bu(t)ym:[ Z 22"'2 i (1) 5 ﬂ (1.16)

i, j=1

Let h*(t) = sup th,(¢), v h ()4, R” (1) = inf Lk (e), ooy B (D)
Then the following 1nequa11ty holds [5]

K (1 (2 ) }_Jh(t s () 80 (0 (1.17)
=] i=1
On the basis of (1.16) and (1.7) it can be shown that the bilinear
form which appears on the left-hand side of equation (1.14) satisfies
the inequality

VIO RS S B un< V(@)Y & (1.18)
fml 1, el im1

: 2 2 2 2
iz, %+ coo 2 <yt oy S

Introducing the variables £, ..., £ into equation (1.7) and taking
into account the fact that yl2 e + yn2 = flz + e+ fnz, we obtain

A SE0)= 3 505050+ Y whEOEE—) (119
i=1 i j=1 i, =1

Under the condition that flz (6 ~r)+ oo + fnz {t-r)< 512 {(t) +
.+ 52 {t) we have
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k13 n n
VIED SEO< S k05— <VIF@ SO (1.20)
i=1 i; j=1 il
On the basis of (1.20) we can obtain an estimate for the derivative
dV/dt, namely,

N G+ VE@)EOE O >
i; j=1
- d n n -
SE=2FE0> N EO+NVEMEOLED (121
im=1 ] j=1
(81}=0Wheni=,£‘", 8i1= 1)' V=Elz . . +en2
From this inequality (1.21) we can now draw the following result.

Theorem 1. The trivial solution of the system of differential equa-
tions of first approximations is asymptotically stable for all values of
the lagging argument r if the roots A, (¢), ..., A (t) of the equation

det | ;; () + 3i; (V' (1) =N =0
satisfy the condition A (t)ge <0 (i=1, ..., n) t> ty, where ¢ is
a fixed negative number of arbitrarily small absolute value.

2. Considerably less rigid conditions for stability can be obtained
on the basis of Theorems 6 and 7 of reference [2 1],

Because of (1.3) one may write the expression (1.6) for the derivative
of V in the following form

g—g': 2 a;;° (t) Z; (t) z; (t) -+ E Cij (B z; (1) [z; (t —_ 't) e &§ (t)] (2.1)
1, j=1 i, jeal

where the first sum on the right-hand side is the negative-definite
derivative of V in consequence of (1.4).

By a well-known formula of Lagrange for finite increments
d
=) =2, = ==z (s)  (G=i—050<8<  (2.2)
From the equations of the first approximation (1.3) we obtain

n
Zi(t— =) — 25 () = — = 3 [Pjs (3;) %5 (3;) + ¢1s (35) s (5;— )] (=1 wcsm)
§=1 (2.3)
Making the appropriate substitutions in equation (2.1), we get

F= D @ OnOn0 =R w3 )
X 3} (Pis (9,2 (35) + e (05) @ (0, — 7)) (2.4)

=1
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On the basis of theorems proved in [2 1, we have the following result.
The stability of the null solution of a system of differential equations
of the first approximation (1.3) follows from the negativeness of the

function dV/dt along every integral curve satisfying the condition

Vie,z.(c), ..., Zn () S V (¢, 2, (1),

, Tn(l)) whereo<t
Making use of the linear transformation

(2.5)

Zi=kiq )y + .o A kin(l) yn

where the y,, ..., y, are such that V = ylz

cen + ynz, we obtain

LSy =3 @@y 0)—Us
i=1 i; =1 (26)
O () =S @® (1) ks (8) by (8)

U= 2 Cuv () Fpi(t) ¥i (8) [Pos (04) ks (0v) y5 (ou)+

iy fr ey, Se=1 + Gus (G\,) ks’. (av—t) Y; (G’v-——‘t)] (27)

The stability of the system of first approximations is implied by the
negativeness of the left-hand side of equation (2.6) under condition
(2.5) or under the equivalent conditions

n H
Zy, (3) < m 0 FwE—I< PO U=t (28)
o - =1 i=1
We shall determlne the least upper bound of the factor r oceurring in
the right-hand side of equation (2.6). It is obvious that this bound is
attained on the boundary of the region, and that for its determination
one may replace the inequalities (2.8) by the corresponding equalities

Let us make the following change of variables in the expression (2.7)

inrYi (i::i,...,n)

= VI
where y,,

(2.9)

» ¥, are the dlrectlon cos1nes of the radius vector of a
point on the sur face yl

. + yn =
U = 7'2 2 C;xv (t) k}zi (t) Yi (1) [pvs (GV) ks? (SV) i (GV) +
i,y B, Y, S=)

. We thus obtain the equation

+ qus (30) koj (39 — 7) 5 3y — 7)1
Since |y | < 1, it follows that in the region (2.8) the next in-
equality holds:

n

supU <2 :S

e (1) ] Ths () 1T prs (30 | 1 Bss (20) | +
PRE (3] s (5= ) 1) (2.10)
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Obviously, inf U= —sup U under condition (2.7). Therefore, the deri-
vative dV/dt must satisfy the inequality

c%—< Z ai; N () yi (D) y; (1) +

+ ) yig(t){ S e ] Hhai O] pvs (33) | s (a0} | +
==1 i, Jo @, v, =1

1w (02 1y s =) 1}
Setting

ot,=sup D (e )] [Fu ()] Pw(en) |1 ke ()| +

i, o, v, 81
19w (0u)| [Ksj (v — )] (2.11)

in the region t ~ 7 <0, gt (v =1, ..., n) we obtain

dV k3 i
< N e W) yy; el 1) Y vt
i, je} fam]
or

av o .
T < E {ai* (t) + 370 (8, T ¥iy5s  Bij is Kronecker’s delta (2.12)

i, j=1

Theorem 2. The trivial solution of the system of differential equa-
tions of the first approximation is asymptotically stable if the roots
A (e, 7), «ooy A (t, 7) of the equation

det[la;; (0 (1) 4+ 85 (rw (¢, 1) — X\)|=0

satisfy the condition A (¢, r) g e < 0 (i =1, ..., n) t> t,, vheree
is a negative number of arbitrarily small absolute value.

It is thus clear that there always exists a non-zero value of the lag
r for which the asymptotic stability of the solution of the system (1.4)
implies the asymptotic stability of the system (1.3).

3. Theorems 5, 6 and 7 of [2 ] permit us to obtain not only sufficient
conditions for the asymptotic stability, as formulated in our Theorems 1
and 2, but they also yield estimates of the disturbances. lLet us assume
that the obtained estimate is of the form:

4
V <V, exp X N (2)dt (3.1)

The inequality (3.1) must then be implied by the values of the
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derivative dV/dt which depend on the coordinates xy {(t), ..., x (t)
x,(t =r), ..., x,(t = 1) of two points lying on an integral curve. Be-
cause of (3.1) these points must satisfy the inequality
t
V(t, 2 (), ... n (1) exp S N () ALY (=5, 2y (L — ), .+ . 2 (=) (3.2)
f—1
Next, let the values of xi(t) e, X (t) be kept fixed. Under this
condition we shall determine the sup dV/dt in the region of values of
x, (t~1), s, x,(t — r) given by the inequality

i
V(t — 1, 23 (2=, - .« s T (E—D)) <V (£, By (£): -0 T (1)) XD 3 — N (1) dt (3.3)

et
Constructing the function
!
®, = “—v{zyz (t-—'r)—-w(t)zyt (t)] (e =exp { —n' @ar) (3.4)
im1 i=1 t-x

and making computations analogous to those that were performed in Section
1, we obtain the following inequality for the derivative dV/dt:

n

S B () +0 VIO E D) o8 > WL J

i,i=1 i=1

> 3 But) + 3 VT O ) s (3.3)

ij=1

where §12 + oeee + fnz = V and the variables 61, ..., &, are connected with

the variables Xy eeey X, by the same transformation formulas as those in
Section 1.

The function ¢ (t) has to be such that the equation (3.5) must imply
the assumed estimate (3.1). Hence, for every t » t,, the function A*(t)
must not exceed the largest root of the equation

det [ Bi; (1) 4 3; (Ve () K — )| =
Suppose g’ (t) is the largest root of the equation
det | Bi; (£),— Bujn ] =

Then it is obvious that A“(t) will have to be determined from the
inequality

YOS +VeR (@) (3.6)

But in accordance with the definition of ¢ {t), the function A’(t) is
actually determined by the inequality (3.6).

The inequality (3.6) can be replaced by an equality. Replacing ¢ (t)



Stability in first approximation of systems with lag 223

by its value from (3.4) we obtain
t

N =w®+VEDexp(— 4 (¥ (3.7)

t—=

The disturbance can thus be found in the form (3.1) where the function
A’(t) is determined by (3.6) or (3.7).

In an analogous manner one can obtain an estimate for the disturbance
in the case when the estimate of dV/dt is found en the basis of Theorems
6 and 7 of [2].

Let us suppose again that the resulting estimate has the form
t
V < Voexp \xl (t)dt (3.8)
te
Performing the orthogonal transformation of variables to the new
variables Yir ever Ypr we obtain, for o < t,

26 < T ) expg O (3.9)

im1 i=l

The inequality (3.9) implies that the variables

Yr(ov)se oo s Ynioy), NnEv—1h ... yn(en—1)(v=1,...,n)
which enter in the expression (2.6) for dV/dt, satisfy the inequalities

t n
2 ¥i® (95) < (exp S — A (2)dt) Y, yi* (1)
oj

j=1 =1
t n
2, yi¥(o;— )< (exp S — A (8) dt) D) v (1) (3.10)
i=3 5T im1
where
oj=1—10 0<h;<<1
Setting

H

a=exp { —n@at, g0=cxp { —n@a

(—0}-1 t—(l‘f'oj)’

t t
s()=exp | =, p)=exp { —2 (e

t t—27
and assuming that Al(t) £ 0, we obtain

;i ()<e(t),  $,OO<P)  G=1.....m) (3.11)
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In this connection it should be noted that the inequalities (3.10) can
be strengthened and given the form

n n n n
Sy <oOJRW, 3 wte—< ) (312)
im1 =1 in1 im1

One can then determine the sup dV/dt in the region (3.12).

Performing computations analogous to those made in Section 2, we ob-
tain for dV/dt the inequality (sup U=~ inf U)

n

D a0 (1) — 8 for (6,9 Vo (8) + wa (6,9 V(D)1 yiys < % <
i,j=1
< D O+ 30006 OVED + o (60 VEDI D ys  (343)
i,fe]
where ’
ot =sup 3 1w 0) b 0) (o) ()
1,0,1,9,5m
oyt =sup T e (1) ks (8) g o) fy(3,—)]
4,5 5,¥,8=1
in the region t -7 < 0, < t.

The functions ¢ (t) and ¢ (¢) must be such that for every t > t, the
function A, (¢) be not smaller than the largest root of the equation

det | ai;® (2) 48 [= (01 (2, %) Vo (0) + w2 (1, 9) V() —N | =0
Let g, (¢t) be the largest root of the equation
det| @y — 3| =0

Then, obviously,
t
M (6) > b (8) + < [on (L7 exp % S_Al(:)du.
t—7
[}
+ ey(t, ) exp L S mxl(t)dt] (3.14)

t—2v

The inequality (3.14) determines the function A (t). Thus the estimate
of the form (3.8) can be obtained, and the function A (t) can be deter-
mined by means of the inequality (3.14),

For the determination of the function A‘(t) by means of (3.7) and of
A (t) by the use of (3.14), one can apply the well known method of
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successive approximations. (It should be noted that (3.14) may be re-
placed by an equality).

Let A" (£), A,7(8), ooy A7(2), wuw, and A, (0 (e), A, (1) (),
AT (t), cee be approx1mat1ng sequences for A’ (¢t) and A (¢) respect-
ively,

Then, assuming that )\0' =0, or Al(o) = 0, we obtain

M ()= () +VH @)

.........................

W () =0 () + VI @expis | —a (dt)

t—t

MW () = g (8) + 7 [y (2, 7) +04 (2, T)]

-------------------------

i
M () =gy )+ {m, (t,7) exp+ S —Nr-D () dt 4
t—t

¢
+op(b9expt | —he (1) dr]

i—27

(uestions on the convergence of the thus obtained sequences are not
considered in this work.

4. Returning to the original systems (1.1) and (1.2) we can formulate
the following sufficiency criteria for stability.

Theorem 3. let the system of differential equations of first approxi-
mations

dz hi .
-;{;:“—E(Pij(t)xj(t)+Qi5(t)xi(t""t)) (i=1,.c.,m)
=1
be given. let there exist, for this system, a positive definite Liapunov
function whose derivative is dominated by a negative definite quadratic
form. Then the perturbed motion is asymptotically stable and independent
of the functions X;.

The proof of this theorem is analogous to the proof of the correspond-
ing theorem for systems without lag [7].

It 1s obvious that Theorem 3 is true also if the functions X are re-
stricted, for example, by conditions [ 7] of the type

[ Xi(Gz (t)y o, Za (@), 2 (E—7), ... 2 (E— )<
LAY O [+ F 2O B =) + .+ —D)])

where A is a sufficiently small constant.
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On the basis of Theorem 3 one can assert that the conditions, given in
Theorems 1 and 2 for the asymptotic stability of the null solution of the
first approximation equations, are also sufficient conditions for the
asymptotic stability of the original system (1.1),

5. As an illustrative example let us consider the second order differ-
ential equation

? () + a9 (1) + o (1) +agp(t —T) =0 (5.1)

which describes transient processes in certain automatic control systems

[81.
We introduce the notation
e)== (1) oM =mz(), a=—b (i=1273)
Then the equation (5.1) can be written in the form of the system

d
2 —bm O+ bm O+ n—1), =) (5.2)

If we let 7 = 0, we obtain the system

d
b )+ Gt b2 (D), = (1) 3)

Let us suppose that the trivial solution of the system (5.3) is stable.
Under this assumption we shall try to determine the Liapunov function as
a quadratic form

V = au$12 + Zamxlxz + anx-f
satisfying the equation
dV [ dt = — 2 (z,* + 2.%)

where the derivative dV/dt is computed on the basis of (5.3). Solving
this equation we obtain

1 — (ba+ bs) _ 1 b (bo 4 5s)® — (B3 + bs)
= et bs) 0 T TR 8, Gz = by (b -+ bs)

Under the hypothesis that
a;>0,a3+ a3 >0

(5.4)

the quadratic form V will be positive definite. Let us evaluate its
derivative on the basis of (5.2). We thus find that

1 dV
T gr = @by + @10) 12 (1) + (@nads + d1aby + %as) 21 (1) 22 (8) + Aadoza? (8)] +

+ by [anz: (1) + 21o2e (2)] 22 (2 — 1) (5.5)

According to Section 1, one can obtain the stability conditions as
the conditions that the function dV/dt be negative if V(x (¢t ~r),
2,(t —r) ) g Vlx,(t), x,(¢) ). For the purpose of finding a dominating
functu)n for dV/dt we transform V to the canonical form by the substitu-
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tions
1 a
Ty = klyl + k‘-’yZn Xy = Yy (kl = a—u— ay1tog — al!" k! a'&—"::)
Then
1
V=g (@ude — a1s?) (0. + v2)
Expressing the equation (5.5) in terms of the variables Yy» ¥;» we ob-
tain
1 dv
T g7 = (enby + @) krPya® (2) + [(@u1dy + d1a) 2hika 4
+ (@bs + drohy + o) Fa} y1 (8) y2 (&) + [(@02s + @19) ka® +
+ (@11d2 -+ Gyabs - Ao} Ky - Qaobe] ya? (8) + By (D ya B — )

The largest value that dV/dt can attain in the region
Vit—T)+ Pt —D<ut ()4 y2 ()
cannot. exceed sup dV/dt in the region |y, (t = r) | | y,(t) | + |5,(¢) |.

The function dV/dt will be negative definite if those quadratic forms
are negative definite, which are obtained from dV/dt by setting yz(t -7)
equal toy, + y,, or ~ ¥y * y,. Noting that the first Sylvester inequal-
ity is always satisfied, we obtain the following criterion for the
definiteness of the two mentioned quadratic forms:

(@b + a1s) + (@11 / k) [bslllans b1 +a1e) ko? 4 (@pba -+ dyobs -+ dog) ks + Ayabs} —
— % {(ands 4 12) 2ks 4 (@11bs -+ Gaeby + doo) - Anbs]? >0

Expressing a,,, a,,, a,,, k. k,, by, by, by 1n terms of the
coefficients ay, a,, ag of the original system, we find that

—lasl(1 -+ as+as)? / a1 (a2 + aa)V (a3 + as) [(1+ a2 + a3)® + a2]) X [1+a13/ (4 + ag +
+a)®l — a1/ (1 + a2 + as)+Hasl(l -+ a3 + a3) [ m(as+ ap)2> 0 (5.7
Thus we have obtained conditions for the stability of the trivial

solution of the equation (5.1) which are independent of the value of the

lag r ; i.e. conditions (5.7), and a, >0, a, + a; > 0.

Making use of Theorem 2, one can obtain stability criteria that
involve the lag r.

Let us assume that in accordance with equation (2.2) the following
condition is satisfied for (5.5)

za(t—‘f)=3g(t)—~’f~§r$a(d) (0=’t—0‘7, 0<0<1)

From (5.2) we have: z,(t - 7) = x,(¢t) - rx,(6). Making the proper
substitutions in (5.5) we obtain

G == @ O 2X0) — byt [z () + st (] 72 (a) 5.8)
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The conditions for stability can also be expressed as conditions that
the function dV/dt be negative if

V(i (o), 23 (o)) <<V (31 (8), 7 (t))

Let us transform the quadratic form V to its canonical form by means
of the substitutions

a 1
=y, Ta=lyi+lye, L =— 2 L= ™ Vs — a;e?

¥
Qo2

Then

1
Vo= ™ (@102 — &®12) (412 + ¥2°)
22

= — {y:* (1) + 1% ()) -+ 2Llays (D) 42 () + LPyo® ()] —
— byt [(t11 + %12ls) ¥1 () + Qrelay (D] 91 (0)
The least upper bound of the derivative dV/dt in the region
¥i* (0) + ¥2? (0)<ye® (0) + 12 (0)
cannot exceed the least upper bound of dV/dt in the region
(o) [ <<y () |+ 1wl |

Analogously to the above procedure we obtain as a sufficient condition
for dV/dt to be negative, the condition of positiveness of the quadratic
form

vof =
&%

4+4L%— 1 by } 7 (@ + dl)] 9%+ 2 — f b3 17051212]2!22 + 240 +
+ | bgt- o + A1aly 4 agels) jnve 5.9
that is, the following condition
[+ 12— | bs| T (211 + ®12l1)])[2—[bsiTarals] — [Lila4-1/2 [Ba]T (2132 1ali 4 2 12D2)] 2> O (5.40)

Thus, on the basis of Theorem 2 we find that the trivial solution of
(5.1) will be stable if a, > 0, a, + ay > 0 and condition (5.10) is
satisfied.

Beginning with a certain value 7, the region of stability determined
by the inequality (5.10) either intersects or lies entirely within the
stability region determined by the inequality (5.7).

This shows that the estimate of dV/dt by the method of Section 2 is
more exact than the one given in Section 1 for small values of the lag
only,
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